

TECH NOTE

Problems that arise when converting an Excel spreadsheet to a DPL program can often be traced to the use of

spreadsheet functions that are either unsupported by DPL or are supported only in a certain functional form.

When using a large, complicated spreadsheet model, the existence and location of these functions in the

spreadsheet is sometimes difficult to determine. This memo documents the supported, unsupported and

“conditionally” supported spreadsheet functions. The proper form of the conditionally supported functions is

also described.

1.1 Excel Functions Supported In DPL (Exhaustive List)

Excel DPL Excel DPL Excel DPL

ABS @abs LN @ln ROUND @round

AND Xland LOG10 @log ROUNDUP @roundup

AVERAGE @avg MATCH xlmatch ROUNDDOWN @rounddown

CHOOSE @choose MAX @max ROWS** @rows

COLUMNS** @cols MEDIAN xlmedian SLN @sln

COUNT @count MIN @min SMALL xlsmall

DDB** @ddb MOD** xlmod SQRT @sqrt

EXP @exp NA @na STDEV @std

FALSE @false NOT ! SUM @sum

FV** @fv NPER** @cterm,@term SUMPRODUCT* @sumproduct

HLOOKUP** @hlookup NPV @npv SYD @syd

IF** @if OR xlor TRANSPOSE xltranspose

INDEX** xlindex PI @pi TRUE @true

INT xlint PMT** @pmt TRUNC** @int

IRR** @irr PV** @pv VAR @var

LARGE xllarge RATE** @rate VLOOKUP** @vlookup

*May not convert when the function arguments are array formulas.

**See Table 1.3 and accompanying notes.

1.2 Excel Functions That Are Not Supported In DPL (Not Exhaustive)

All Date Functions RANK

COS SIN

COUNTIF SUMIF

INDIRECT TREND

ISBLANK

ISERR

ISNUMBER

OFFSET

1.3 Excel Functions That Are Supported But Can Fail To Convert

Excel DPL Excel DPL

COLUMN*** N/A MOD @mod

DDB @ddb NPER @cterm, @term

FV @fv PMT @pmt

HLOOKUP @hlookup PV @pv

IF @if RATE @rate

INDEX xlindex ROW*** N/A

IRR @irr TRUNC @int

LOG @log VLOOKUP @vlookup

MATCH xlmatch

***May require option "suppress series generation". These functions are translated into index expressions;

there are no corresponding functions in DPL.

1.4 Description Of The Conversion Requirements For Functions

Italics indicate an optional functional argument.

1.4.1 Mathematical Spreadsheet Functions

1.4.1.1 LOG10(number), LOG(number, base)

LOG10(number) and LOG(number) convert to @log(number).

The LOG function will not convert to DPL code when the optional argument base is specified. The base of LOG

is assumed to be 10 when converting to DPL code.

LOG and LOG10 are not defined when the argument is 0 or negative.

1.4.1.2 MOD(number, divisor)

MOD(number, divisor) converts to @mod(number, divisor).

The divisor cannot be 0.

When number, divisor > 0 or number, divisor < 0, @mod and MOD have the same value. When the number

and divisor have opposite signs, however, @mod and MOD give different outputs because they use different

rounding conventions.

In Excel, the MOD function is calculated such that 0 < |MOD(number, divisor)| < divisor. The formula for MOD

is given by

MOD(number, divisor) = number - divisor*INT(number/divisor)

where INT is an Excel function that rounds its argument to the largest integer smaller than the argument. For

example, INT(-9.5) = -10. Note that the Excel INT function uses a different convention for negative numbers

than does the DPL @int function. Using this INT function, MOD produces the output

MOD(-7, 3) = 2 and MOD(7, -3) = - 2

In DPL, the @mod function is given by

@mod(number, divisor) = number – divisor*@int(number/divisor)

where @int is a DPL function that takes the integer part of its argument. In contrast to the Excel INT function,

@int(-9.5) = -9. Therefore, the @mod functions produces the following output:

@mod(-7, 3) = -1 and @mod(7, -3) = 1

When converting the MOD function to DPL code be careful when you have negative arguments. To be on the

safe side, you can replace MOD(number, divisor) with number – divisor*TRUNC(number/divisor), which is

equivalent to the @mod function (see TRUNC description).

1.4.1.3 TRUNC(number, num_digits)

TRUNC(number) converts to @int(number).

DPL will not convert TRUNC when the optional argument num_digits is specified. DPL assumes num_digits is 0

when converting.

1.4.2 Financial Spreadsheet Functions

Naming conventions used in this section:

• rate = interest rate

• nper = number of payment periods

• pmt = payment

• pv = present value

• fv = future value

1.4.2.1 DDB(cost, salvage, life, period, factor)

DDB(cost, salvage, life, period) converts to @ddb(cost, salvage, life, period).

DDB will not convert to @ddb when the optional argument factor is specified. The arguments life and period

should not be 0.

DPL assumes factor to be 2 (double-declining balance method).

1.4.2.2 FV(rate, nper, pmt, pv, type)

FV(rate, nper, pmt) converts to @fv(-pmt, rate, nper).

FV will not convert when the optional arguments pv and type are specified.

The argument rate should not be 0.

DPL assumes type equals 0 (payment at end of the month).

1.4.2.3 IRR(values, guess)

IRR(values, guess) converts to @irr(values, guess).

IRR will not convert when the optional argument guess is omitted.

1.4.2.4 NPER(rate, pmt, pv, fv, type)

NPER converts to two different DPL functions, depending on which of its arguments are specified:

NPER(rate,, pv, fv) converts to @cterm(rate, fv, -pv);

NPER(rate, pmt,, fv) converts to @term(-pmt, rate, fv).

NPER will not convert to DPL code when more than three arguments are specified.

No argument in NPER should be 0.

For conversion to @term, DPL assumes type equals 0 (payment at end of period). Payment type for @cterm

doesn’t matter.

1.4.2.5 PMT(rate, nper, pv, fv, type)

PMT(rate, nper, pv) converts to @pmt(-pv, rate, nper).

PMT will not convert when the optional arguments fv and type are specified.

The arguments rate and nper should not equal 0.

DPL assumes type equals 0 (payment at end of period).

1.4.2.6 PV(rate, nper, pmt, fv, type)

PV(rate, nper, pmt) converts to @pv(-pmt, rate, nper).

PV will not convert when the optional arguments fv and type are specified. The argument rate should not

equal 0.

DPL assumes type equals 0 (payment at end of period).

1.4.2.7 RATE(nper, pmt, pv, fv, type, guess)

RATE(nper,, pv, fv) converts to @rate(fv, -pv, nper).

RATE will not convert when the optional arguments pmt, type, or guess are specified.

The arguments nper and pv should not equal 0. Payment type for @rate doesn’t matter.

