Probabilities for Low/Nominal/High Chance Nodes

A "roughly normal" probability distribution can be approximated by a three-state chance node as follows:

- Probabilities: $30 \%, 40 \%, 30 \%$
- Values: P10, P50, P90

To see why this works, consider a standard normal distribution (mean $=0$, standard deviation $=1$)

- The P10, P50, P90 are $-1.2816,0,+1.2816$ (you can look these up in a table or just =NORMSINV(0.1) in Excel)
- Assume we will approximate this distribution with a three-state discrete distribution

We need to solve for $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$. We want the expected value to be 0 , which implies $\mathrm{p} 1=\mathrm{p} 3$ and we want the variance to be 1 , so:

- $\mathrm{p} 1^{*}(0-1.2816)^{\wedge} 2+0+\mathrm{p} 3$ * $(0+1.2816)^{\wedge} 2=1$

Using p3 = p1 and simplifying:

- $\mathrm{p} 1=1 /(2$ * 1.2816^2)
- p1 = 0.3044, or about 30%

$\mathrm{p} 1=\mathrm{p} 3$ and $\mathrm{p} 2=1-\mathrm{p} 1+\mathrm{p} 3$

Hence $30 \%, 40 \%, 30 \%$ makes a good approximation. The same argument works for other normal distributions.

